The Definitive Guide to التعلم العميق
الذكاء الاصطناعي الذكاء الاصطناعي وتأثيره في عالم التعليم
كتاب معجم مصطلحات التعلم الآلي والتعلم العميق وعلم البيانات
طبقة المُخرجات في شبكة التعلم العميق هي الطبقة النهائيّة التي تنتج مُخرجات الشبكة أو تنبؤاتها بناءً على بيانات الإدخال التي تم معالجتها.
تعد تقنيات التعلم العميق في تحليل البيانات أداة قوية للتفكير التحليلي واستخلاص النتائج الهامة من مجموعات البيانات الضخمة. توفر هذه التقنيات رؤى قيمة وتساعد في اتخاذ القرارات المستنيرة في مختلف المجالات.
يستخدم التعلم العميق أيضًا في تطوير نماذج للتعرف على الكلمات والنحو في اللغة العربية. يمكن لأنظمة التعلم العميق تحليل هياكل الجمل والقواعد النحوية واستخلاص المعلومات الدقيقة حول اللغة العربية.
على الرغم من أن التعلم العميق يعتمد على الذكاء الاصطناعي، إلا أن هناك اختلافًا بينهما. فالذكاء الاصطناعي يشير إلى القدرة العامة للأنظمة الذكاء على القيام بمهام تشابه القدرات العقلية للبشر، بينما يهتم التعلم العميق بتطوير نماذج ومعرفة عن طريق تحليل البيانات الكبيرة واستخلاص النماذج والأنماط منها.
في الواقع، هدفنا في كتابة وتجميع محتويات هذا الكتاب هو اكتساب المعرفة الكافية بالتعلم العميق ومقارباته المختلفة من خلال التأكيد على الموضوعات الهامة والجديدة وتقديم رؤية شاملة للتعلم العميق.
يمكن للشبكة العصبونية للتعلم العميق تصنيف هذه البيانات وفرزها أيضًا، وذلك عن طريق تحليل المعاملات المالية ووضع علامة على بعضها للكشف عن الاحتيال.
التعرف على الوجوه لمعرفتها والتعرف على السمات، مثل العينين المفتوحتين والنظارات وشعر الوجه
تستخدم السيارات ذاتية القيادة نماذج التعلم العميق لاكتشاف لافتات الطرق والمشاة تلقائيًا.
يُعد التدريب الأولي عملية مكلفة ومستغرقة للوقت. قد يصعب تنفيذها في حالة عدم توافر بيانات كافية.
ولكن مع تطور تطبيقات التعلم العميق في المجالات الناشئة، ينبغي مراعاة التحديات المستقبلية التي انقر على الرابط يمكن أن تواجهها. فقد تشمل هذه التحديات تأمين البيانات والخصوصية ومعالجة حجم البيانات المتزايد وأخذ الاعتبار للقيود الأخلاقية والقانونية المحتملة.
تحليل واستخراج المعلومات من البيانات الضخمة بطرق أكثر دقة لاتخاذ القرارات الذكية
الإشراف على المحتوى لإزالة المحتوى غير الآمن أو غير الملائم تلقائيًا من أرشيفات الصور ومقاطع الفيديو